激光擴束器技術解析
激光擴束器設計用于擴大平行輸入光束的直徑較大的平行輸出光束。激光擴束器用于如激光掃描、干涉測量或遙測應用中。現在的激光擴束器都是采用從完善的光學望遠鏡基礎中發展而來的無焦系統設計。在此類系統中,位于無窮遠的物體光線,以平行的方式進入內部光學件的光軸中,同時也以平行的方式離開。這意味著整個系統不具備焦距。
傳統上,光學望遠鏡主要用于觀察遠處的目標,例如宇宙中的天體。光學望遠鏡主要可分為兩大類:折射望遠鏡和反射望遠鏡。折射望遠鏡充分利用透鏡來折射或彎曲光線,而反射望遠鏡則是利用反射鏡來反射光線。
最通用的擴束鏡起源于伽利略望遠鏡,通常包括一個輸入負透鏡和一個輸出正透鏡。輸入鏡將一個虛焦點光束傳送給輸出鏡,兩個透鏡是虛共焦結構。一般小于20倍的擴束鏡都用該原理制造,因為它簡單、體積小、價格也低。盡可能的該擴束鏡設計成小的球面相差、低的波前變形和消色差。它的局限性在于不能容納空間濾波或者進行大倍率的擴束。 擴束倍數和準直倍率不僅與擴束鏡的參數有關,還與激光束參數和擴束鏡透鏡的位置有關。擴束器的功能是降低激光束的發散角,進而使激光器聚焦光斑更小。開普勒式望遠鏡由焦距為正的透鏡組合而成,而透鏡是通過焦距總和分割(圖1)。離來源圖像或被觀察物體近的透鏡被稱為物鏡,而靠近人眼或成像的透鏡則成為成像透鏡。
圖1: 開普勒式望遠鏡
伽利略式望遠鏡由正透鏡和負透鏡組合而成,透鏡也是通過焦距總和分割(圖2)。但是,由于其中一個透鏡為負透鏡,因此兩個透鏡之間的距離比開普勒式望遠鏡的透鏡距離短。需要注意的是,使用兩個透鏡之間的有效焦距能夠獲得出色的近似總長度,而使用后焦距則能夠獲得準確的結果。
圖2: 伽利略式望遠鏡
理論:在結構中,物鏡和成像透鏡的位置顛倒。平行輸入光束在開普勒式中集中在物鏡和成像透鏡之間的一個點上,進而形成一個激光能量聚焦的區域。該集中的點會加熱透鏡之間的空氣,折射光路中的光線,而這有可能會造成波前誤差。有鑒于此,大部分都選擇使用伽利略式設計或其變體。
使用開普勒式或伽利略式設計于應用時,重要的是能夠計算出輸出光束發散,這將決定了平行光線的偏差。光束發散取決于輸出激光光束直徑和輸出激光光束直徑。
放大倍數(MP)現在即可依據光束發散或光束直徑來表示。
解上述方程式時,可以看到輸出光束直徑(DO)提高時,則輸出光束發散減少,以此類推。所以,如果您將來縮小激光光束,光束直徑將會縮小,但激光的光束發散將會提高。小光束的代價就是形成很大的擴張角。
初始參數 放大倍數 = MP = 10X
輸入光束直徑 = 1mm
輸入光束發散 = 1mrad
工作距離 = L = 100m
計算參數
輸出光束直徑
在不具備使用上述方程式的情況下,將此與光束直徑相比。
雖然會因特定的擴束功率而提高輸入激光光束,但它也會因相同的擴束功率而降低光束發散,進而在較大距離下形成較小的平行光束。